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A B S T R A C T

The APA encourages authors to thoroughly report their results, including confidence intervals. However,
considerable debate exists regarding the computation of confidence intervals in within-subject designs. Nathoo
et al.’s (2018) recently proposed a Bayesian within-subject credible interval, which has faced criticism for
not accounting for the uncertainty associated with estimating subject-specific effects. In this article, we
show how Nathoo et al.’s within-subject credible interval can be easily corrected by utilizing the theory of
degrees of freedom. This correction obviates the necessity for estimates of subject-specific effects that offer
shrinkage. Instead, it involves a straightforward adjustment in degrees of freedom in both the interaction
mean squares and the 𝑡-distribution used to compute the interval. Therefore, our proposed interval, being
easily computable through a simple formula, eliminates the need for fully Bayesian approaches. It accurately
represents uncertainty and offers the interpretational benefit of Bayesian intervals.
The American Psychological Association (APA) recommends that
uthors report the results of their statistical analysis in detail, includ-
ng confidence intervals (American Psychological Association, 2019).
hese intervals serve to communicate uncertainty and helps decide
hether the values within the intervals are substantial enough to
e practically significant (e.g., Amrhein & Greenland, 2022; see also
itzmann, Nagengast, Hübner, & Hecht, 2024). Confidence intervals,
omputable for any statistic, are particularly crucial in experimental
sychology, where the most important statistics are level means and
heir differences. Whereas confidence intervals for means are undis-
uted in between-subject designs, where each person is exposed to only
ne level of the factor, there is a hot debate as to how confidence
ntervals should be computed when the same person is exposed to all
evels (within-subject designs). This type of design, preferred for its
igher statistical power and cost-effectiveness compared to a between-
ubject design, presents a challenge: standard confidence intervals may
verlap in samples of typical size, potentially obscuring differences
etween levels, particularly when subjects differ to a large degree in
heir means across the levels. To address this issue, Loftus and Masson
1994) proposed a frequentist within-subject confidence interval. This
nterval is not a confidence interval in the usual sense (Loftus &
asson, 1994), but it works as a way to make significant differences

etween levels visible. The idea behind this interval is to minimize
he impact of between-subject variability on the interval. Since Loftus

∗ Correspondence to: Medical School Hamburg, 20457 Hamburg, Germany.
E-mail address: steffen.zitzmann@medicalschool-hamburg.de (S. Zitzmann).

and Masson (1994) introduced their method, there has been increasing
interest in refining this interval, leading to various alternative calcu-
lation methods being proposed by scholars such as Baguley (2012),
Cousineau (2005), or Hollands and Jarmasz (2010), among others.
Whereas Loftus and Masson’s original procedure is considered complex,
subsequent methods like the one proposed by Cousineau (2005) have
simplified the calculation by using a normalizing procedure, which
minimizes differences between subjects in the data. At the heart of
this procedure lies a centering approach, which consists of subtracting
each subject’s data points by the subject’s mean. Morey criticized this
interval as tending to be too narrow and proposed a simple correction
to address this issue. Notably, Morey’s corrected interval closely aligns
with Loftus and Masson’s within-subject confidence interval, except
that it relaxes the sphericity assumption. More recent techniques, such
as those by Cousineau (2019) and Tryon (2001), employ decorrelation
strategies to preserve the uncorrelated components of the data, result-
ing in intervals similar to previous ones when the compound symmetry
assumption holds.

In recent years, it has repeatedly been claimed that Bayesian credi-
ble intervals should be favored for their interpretational benefit. These
intervals indicate the most likely values of parameters given the data,
and this is more intuitive than what can be learned from frequen-
tist confidence intervals (Hoekstra, Morey, Rouder, & Wagenmakers,
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Table 1
Motivating example.

Subject Exposure duration

1 s 2 s 5 s

1 10 13 13
2 6 8 8
3 11 14 14
4 22 23 25
5 16 18 20
6 15 17 17
7 1 1 4
8 12 15 17
7 1 1 4
8 12 15 17
9 9 12 12
10 8 9 12

2014). Therefore, Nathoo, Kilshaw, and Masson (2018) proposed a
Bayesian within-subject credible interval. Technically, this interval con-
ditions on Maximum Likelihood (ML) estimates of subject-specific ef-
fects. However, Heck (2019) criticized the interval by pointing out
that it treats the ML estimates as known values, thereby preventing
the incorporation of the uncertainty in these estimates into the inter-
val (see also Nathoo et al., 2018, who acknowledged this limitation
themselves). Furthermore, he argued that ML estimates would not
offer shrinkage, meaning they are not adjusted towards zero. As a
consequence, a too large amount of between-subject variability would
be removed, resulting in an understatement of uncertainty by the
interval. To address these supposed shortcomings, Heck (2019) pro-
posed a stepwise procedure that emulates a fully Bayesian approach.
This procedure enables that uncertainty in estimates of subject-specific
effects is included in the interval.

We welcome the renewed interest in within-subject intervals and
commend Nathoo et al. (2018) for their innovative proposal, which
marks an advancement in the field. Also, we appreciate Heck’s critique.
It prompted us to think again about Nathoo et al.’s within-subject
interval, leading us to suggest an even more straightforward correc-
tion. Whereas we agree with Heck’s primary argument, we question
that estimates of subject-specific effects must be shrunken estimates.
Specifically, we question the underlying assumption at the technical
level (i.e., the level of implementation) that these effects stem from
a common distribution or, in other words, that these effects are ran-
dom effects. We wish to clarify that the concept of random effects
is multifaceted. While not delving deeply into this complex topic,
we propose to distinguish two different notions of the term “random
effects”. The first one has a sampling-theoretical interpretation, where
the units that exhibit the effects are randomly drawn in accordance
with a sampling design. One may refer to this interpretation as ran-
dom by design. This sampling-theoretical interpretation may involve a
distributional assumption at the conceptual level. The second notion
represents a more technical aspect and relates to the distribution of
subject-specific effects. The assumption that random effects stem from
of a parametric distribution is very common in the field as indicated by
various articles in this journal that have used GLMMs, JAGS, or Stan to
model differences between subjects. We will argue and show that this
latter ‘‘random-effects assumption’’ may not be necessary for deriving
a correct within-subject credible interval. Based on our conclusion,
we will justify a simple way to correct Nathoo et al.’s within-subject
interval in such a way that the uncertainty in the estimates of subject-
specific effects is accounted for. The proposed correction involves an
adjustment in degrees of freedom in both the interaction mean squares
and the 𝑡-distribution used to compute the interval. We will demon-
strate that when uncertainty in the ML estimates is incorporated in
this manner, the resulting Bayesian credible interval aligns with the
frequentist counterpart as well as with Heck’s fully Bayesian interval,

which has been noted for its numerical similarity to the frequentist one.

2 
1. Nathoo et al.’s Bayesian within-subject credible interval

Our discussion centers on the most basic within-subject design,
featuring only one within-subject factor. This design has a sample size
of 𝑁 , and the number of factor levels is 𝐶. An example is presented by
Table 1, which showcases the data used by Loftus and Masson (1994)
in their seminal work and by various authors who have since expanded,
criticized, or contributed to the debate about within-subject intervals.
At the implementation level, the model for this design can be expressed
as follows. The response of the 𝑖th subject under the 𝑗th level is:

𝑌𝑖𝑗 = 𝜇𝑗 + 𝑏𝑖 + 𝜀𝑖𝑗 (1)

where 𝜇𝑗 represents the mean across the responses under the 𝑗th level.
The 𝑏𝑖s stand for subject-specific effects. As they model differences
etween subjects, they are almost always of no substantive interest
nd thus typically regarded as nuisance parameters (Loftus & Masson,
994). The 𝜀𝑖𝑗s are the residuals. Notice that contrary to common
ractice, we do not make what we have referred to as the random-
ffects assumption for reasons that we will explain later on, meaning
hat technically, we do not assume that subject-specific effects stem
rom a distribution. That is, we do not implement such a distribution.
n fact, in line with other scholars, Nathoo et al. (2018) wrote about
ubject-specific effects being “random” throughout their article (even
n the abstract). Yet, they clarified that no parametric distribution for
hese effects is assumed, leaving it ambiguous whether any distribution
s required at all and what exactly is meant by random. It might be
peculated that the term random effects was used synonymously with
ubject-specific effects, without any distributional implication.

Nathoo et al. (2018) developed their Bayesian within-subject cred-
ble interval to offer a Bayesian alternative to the within-subject confi-
ence interval. The procedure used in the development of this Bayesian
nterval conditions on ML estimates of subject-specific effects. These
stimates are the deviations of individual means across the different
evels from the overall mean. In the statistical literature, this approach
f conditioning on ML estimates is also widely recognized as empirical
ayes. Its usefulness has been explored by, for example, Liang and Tsou
1992). More specifically, employing aspecific uninformative prior dis-
ribution, the so-called Jeffreys prior, for the level means and the
ariance of the residuals, Nathoo et al. (2018) first derived a posterior
istribution of a level mean. What is crucial to note is that this posterior
onditions on the subject-specific effects. Similar to the normalization
nd decorrelation procedures used by others, conditioning on esti-
ates of subject-specific effects effectively minimizes between-subject

ariability and thereby the impact of this type of variability on the
nterval. In a next step, Nathoo et al. (2018) made use of the empirical
ayes approach and substituted the subject-specific effects with their
orresponding ML estimates. The posterior then took the form of a 𝑡-
istribution (see Appendix of Nathoo et al., 2018, for details). From
his distribution, Nathoo et al. (2018) obtained their interval. Note
hat each residual (𝜀𝑖𝑗) in the model is essentially the interaction effect
f subject 𝑖’s being observed under level 𝑗 (Loftus & Masson, 1994,
ppendix A). Thus, their sum of squares (i.e., the sum of squares due

o the subject × level interaction) is given by:

Sint =
𝑁
∑

𝑖=1

𝐶
∑

𝑗=1

(

𝑌𝑖𝑗 −𝑀𝑖 +𝑀 −𝑀𝑗
)2 (2)

where 𝑀𝑖, 𝑀𝑗 , and 𝑀 are the ML estimates of the 𝑖th subject’s mean,
the 𝑗th level’s mean, and the overall mean, respectively. Using this
notation, Nathoo et al.’s within-subject interval is expressed as:

𝑀𝑗 ±

√

SSint
(𝑁 − 1)𝐶

/

𝑁 ⋅ 𝑡(𝑁−1)𝐶 (3)

Heck’s (2019) primary argument that this interval fails to convey the
appropriate amount of uncertainty, as uncertainty in the estimates of
subject-specific effects is not incorporated, is generally valid. However,
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we challenge his argument that uncertainty would be underestimated
when ML estimates are used instead of shrunken estimates. This ar-
gument is based on the random-effects assumption. In many if not all
articles on within-subject intervals, the premise is that subjects are
randomly drawn from a larger population (random by design), which
may involve a distributional assumption. What is less clear, however,
is how this premise relates to the technical assumption that subject-
specific effects stem from a common distribution. As one reviewer
noted and in line with our argument, Heck (2019) assumed a paramet-
ric distribution, but Loftus and Masson (1994) as well as Cousineau
(2005) and Morey (2008) did not. In mixed-effects modeling, the
random-effects assumption is often made by specifying a parametric
distribution. However, as Nathoo et al. (2018) pointed out on page
4, the assumption is not necessary and was indeed not used in their
within-subject credible interval, justifying interpretation of this interval
as a semiparametric interval. Echoing Nathoo et al. (2018), we question
the necessity of the random-effects assumption. The fact that it is often
made by researchers does not imply its necessity. In other words,
avoiding the assumption does not introduce any extra amount of bias
into Nathoo et al.’s (2018) within-subject credible interval apart from
the bias resulting from ignoring the uncertainty in the estimates of
subject-specific effects. It is interesting to note that Heck (2019) made
the random-effects assumption and incorporated it in his analysis (see
his Equation 6) in order ‘‘to actually fit the model’’ (p. 28). Specifi-
cally, he specified a normal distribution for all subject-specific effects,
following common practice. In the following, we provide both a sub-
stantial and a formal argument in order to show that the random-effects
assumption may not be necessary after all.

2. Why the random-effects assumption may not be necessary

First, we aim to clarify a common misconception regarding subject-
pecific effects. Heck (2019) appears to have operated under the as-
umption that subject-specific effects require that their estimates offer
hrinkage and thus, technically, a common distribution be assumed.
his random-effects assumption is indeed commonly made in the field.
owever, the rationale for considering subject-specific effects as ran-
om is typically not provided. Addressing the broader question of when
ffects should be classified as random, Searle, Casella, and McCulloch
1992) argued that this classification is appropriate if the focus is on
heir population characteristics, particularly their variance. However,
t can be doubted whether researchers using within-subject designs are
nterested in inferring population variances of random effects. Rather,
heir interest lies in the within-subject factors and in their levels.
nother possible justification of the random-effects assumption is the
iew that any Bayes method would involve some kind of parameter
istribution or, in Bayesian terminology, a prior. This means that for the
ubject-specific effects, a prior would have to be specified. Despite the
opularity of specifying one hierarchical prior for all subject-specific
ffects, however, an (independent) prior for each subject-specific effect
ould also be specified and justified. Consequently, there seems to be no
ntirely convincing reason to categorically treat subject-specific effects
s random.

Further, given these considerations, one may ask whether uncer-
ainty about factor levels is affected by the way subject-specific effects
re treated. As we will argue, the answer is No, at least, when priors are
ssumed to be suitably uninformative. To see this, consider the mean
quares associated with the sum of squares due to the subject × level

interaction:

MSint =
SSint
df (4)

f denotes degrees of freedom, a concept to which we will come back
urther below. First, let us examine the scenario where subject-specific
ffects are considered fixed rather than random. It is important to note
hat in this case, the interaction effects will also be fixed, because
n interaction effect of two fixed effects is inherently fixed. Under
3 
hese conditions, computing the expected value of the interaction mean
quares simplifies to just removing the expectation operator (i.e., the 𝐸

symbol). Consequently, the expected value of the mean squares is equal
to the mean squares themselves:

E
(

MSint
)

= MSint (5)

The factor within the multiplicative term of the within-subject interval
is obtained by dividing these mean squares by the sample size (𝑁) and
then taking the square root so that the formula for this interval reads:

𝑀𝑗 ±

√

MSint
𝑁

⋅ 𝑡df (6)

which is the classical within-subject confidence interval as proposed
by Loftus and Masson (1994).

Now, suppose the subject-specific effects are random. Then, the in-
eraction effects are random too. In this case, it can easily be shown (e.g.
earle et al., 1992) that the expected value of the mean squares is equal
o the variance of the residuals in the model:
(

MSint
)

= 𝜎2 (7)

Applying the ANOVA method, which is a (formal) way to derive
(co)variance estimates, we yield an estimate of this variance:

�̂�2 = MSint (8)

Thus, under the random-effects perspective, the within-subject interval
is:

𝑀𝑗 ±
√

�̂�2
𝑁

⋅ 𝑡df
Eq. (7)
←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑀𝑗 ±

√

MSint
𝑁

⋅ 𝑡df (9)

and thus exactly identical with the one obtained under the fixed-effects
assumption. This is clear evidence that the assumption of subject-
specific effects being random is indeed not necessary. It also means that
a common distribution of subject-specific effects is not necessary, nor
are shrunken estimates.

Next, we will shift focus to Heck’s primary argument. Specifically,
we will address the issue that Nathoo et al.’s within-subject credible
interval does not accurately reflect the proper amount of uncertainty.

3. Correction to Nathoo et al.

Heck’s critique regarding the lack of accounting for uncertainty
in the estimates of subject-specific effects is justified. Nathoo et al.
(2018) derived their within-subject credible interval by conditioning
on these subject-specific effects. There is nothing wrong in principle
with conditioning on parameters that are known. However, as the
authors mentioned themselves, the subject-specific effects are in fact
not known but need to be estimated, and this is why they replaced them
by their ML estimates. Nathoo et al. (2018) described this use of plug-in
estimates as giving their approach ‘‘an empirical Bayes flavour’’ (p. 2).
Empirical Bayes approaches are not uncommon and often very useful
in situations where other approaches such as integrating over nuisance
parameters Basu (e.g., 1977), Hecht, Gische, Vogel, and Zitzmann (e.g.,
2020) is impractical, for example, when there is no distribution for
these parameters to integrate over (Liang & Tsou, 1992). However,
this approach results in an interval that tends to be too narrow (Cox
& Reid, 1987). Given this issue, it would be prudent to implement a
correction to ensure a more accurate representation of uncertainty. We
will show that there is a simple way to do this. Key to our approach is a
clear understanding of the concept of degrees of freedom, which plays a
crucial role in statistics. The within-subject credible interval suggested
by Nathoo et al. (2018) is accurate when subject-specific effects are
either known or estimated virtually without error, a situation that is
rare. In general, these effects require estimation, introducing inherent
uncertainty. Because the within-subject credible interval is based on
them, this adds an additional amount of uncertainty to the interval.
The concept of degrees of freedom was elucidated by Student (also



S. Zitzmann et al.

t
f
e
p
n

d

w
t
m
y
a
f
b
w
t
s
N
t
t

d

N
a
e
i
s
f
t

𝑀 b
q
w
T
u
(
p
a
w
B
t
f
c
f
t
c
v
i
i
t
B
B

Journal of Mathematical Psychology 122 (2024) 102873 
known by his real name Gosset) in his famous article The probable error
of a mean, which was published in 1908. In a nutshell, the degrees of
freedom of an estimate reflect the amount of information underpinning
it. This is calculated as the number of data points minus the number of
additional estimates used in the estimate’s computation. For example,
when estimating the variance from a sample, the degrees of freedom
equal the number of subjects sampled minus one, because computing
the estimate of the variance involves one more estimate—the sample
mean.

In a similar vein, we contend that the degrees of freedom in the
within-subject credible interval needs to be adjusted. The reason is
that to compute this interval, one must use estimates of subject-specific
effects. Nathoo et al. (2018) used (𝑁 − 1)𝐶 degrees of freedom in
heir calculation of interaction mean squares and in the 𝑡-distribution
or interval computation. This number is valid when subject-specific
ffects are known: with 𝑁𝐶 data points and 𝐶 independently estimated
arameters, namely the level means (𝑀𝑗), the difference between the
umber of data points and the number of parameters simplifies to:

f = 𝑁𝐶 − 𝐶 = (𝑁 − 1)𝐶 (10)

hich is indeed the degrees of freedom in Nathoo et al. (2018). Note
hat the grand mean (𝑀) can be computed directly from the level
eans, which is why this computation does not necessitate subtracting

et another degree of freedom. However, when subject-specific effects
re unknown and require estimation, an adjustment in degrees of
reedom becomes essential. Without this adjustment, there would be a
ias in the interaction mean squares, preventing uncertainty associated
ith estimating the subject-specific effects from being incorporated into

he interval. To properly adjust the degrees of freedom, it is crucial to
ubtract the number of independently estimated subject-specific effects.
otice that there are only 𝑁−1 such parameters. One is determined due

o the constraint that subject-specific effects sum up to zero. Applying
he proposed adjustment, the degrees of freedom become:

fadj = df − (𝑁 − 1)
Eq. (9)
= (𝑁 − 1)𝐶 − (𝑁 − 1) = (𝑁 − 1) (𝐶 − 1) (11)

ote that the adjustment is not made in the absence of any assumption
bout the subject-specific effects but conditional on assuming fixed
ffects. The adjusted degrees of freedom are simply the default for the
nteraction effect of two fixed effects. Our correction to the within-
ubject credible interval essentially involves replacing the degrees of
reedom used by Nathoo et al. (2018) by these adjusted ones so that
he corrected within-subject interval is:

𝑗 ±

√

SSint
(𝑁 − 1) (𝐶 − 1)

/

𝑁 ⋅ 𝑡(𝑁−1)(𝐶−1) (12)

This formula shows that pooling the degrees of freedom is also neces-
sary, a detail not addressed in earlier work but included in a recent
work by Cousineau, Goulet, and Harding (2021).

Whereas our correction is particularly critical in a within-subject
design featuring one factor with two levels (the bias is less pronounced
when designs have more factors/levels), researchers might still consider
applying the correction in more complex designs. In a design with 𝑃
within-subject factors, each having 𝐶𝑝 levels, the adjustment becomes
more nuanced. Instead of using (𝑁 − 1)

∏𝑃
𝑘=1 𝐶𝑝 degrees of freedom

as Nathoo et al. (2018), we suggest that (𝑁 − 1)
(

∏𝑃
𝑘=1 𝐶𝑝 − 1

)

degrees
of freedom be used. Consequently, the corrected within-subject interval

for these designs reads 𝑀𝑗 ±

√

√

√

√

SSint
(𝑁−1)

(

∏𝑃
𝑘=1 𝐶𝑝−1

)

/

𝑁 ⋅ 𝑡
(𝑁−1)

(

∏𝑃
𝑘=1 𝐶𝑝−1

),

where here SSint is the sum of squares due to the interaction of the
subject factor with all within-subject factors.

4. Summary

Within-subject designs enjoy considerable popularity in experimen-
tal psychology due to their enhanced power compared to between-
subject designs. These designs typically convey uncertainty in level
 i

4 
means through a within-subject interval. There has been considerable
scholarly debate on the computation of this type of interval, with Loftus
and Masson’s (1994) within-subject confidence interval being notably
prominent. More recently, Nathoo et al. (2018) proposed a Bayesian
within-subject credible interval, which conditions on ML estimates of
subject-specific effects, a procedure sometimes called empirical Bayes.

While recognizing the interpretational benefit of Nathoo et al.’s
within-subject credible interval, Heck (2019) raised criticism, partic-
ularly regarding the treatment of ML estimates as known values. This
approach fails to incorporate the uncertainty in these estimates into
the interval, a point we concur with. However, we questioned the
necessity of incorporating shrunken estimates, which typically occurs
when technically (i.e., at the implementation level), subject-specific
effects are assumed to stem from a common distribution and thus to be
random. We showed that this technical assumption is not necessary and
derived a simple, yet effective correction to the within-subject credible
interval, mainly involving an adjustment in degrees of freedom and
leading to several implications. Firstly, Nathoo et al.’s method is indeed
valid, except that it involves too many degrees of freedom, thereby
understating uncertainty. Secondly, contrary to common practice, tech-
nically assuming random effects is not necessary, which can be viewed
as a strength as less assumptions are involved. This leads to the third
point: Heck’ suggested stepwise procedure as well as any other fully
Bayesian approach is not the only possible remedy. Nathoo et al.’s
formula and our corrected version have a simple closed form, offering
ease of application and avoiding the complexities of fully Bayesian
approaches. For example, while fully Bayes via Markov chain Monte
Carlo techniques is generally promising, particularly when the model
includes many random effects (e.g., Zitzmann, Lüdtke, Robitzsch, &
Hecht, 2021), it can be computationally demanding (Hecht et al.,
2020), and it requires expert knowledge, for example, in order to
diagnose whether chains have converged (see also Zitzmann & Hecht,
2019).

It is noteworthy that by employing the adjusted degrees of free-
dom, our within-subject credible interval aligns with the within-subject
confidence interval as described by Loftus and Masson (1994). It also
mirrors Morey’s (2008) corrected within-subject confidence interval,
the primary distinctions being that Morey’s interval uses separate mean
squares for each factor level. Our correction is thus similar to Morey’s
proposed correction to Cousineau’s (2005) within-subject confidence
interval. Cousineau interval differs from Loftus and Masson’s (1994) by
a factor of 𝐶∕(𝐶 −1), leading Morey (2008) to recommend multiplying
y this factor rectify the bias. Given these prior works, one might
uestion the novelty of our contribution. However, our starting point
as a newly proposed Bayesian credible interval (Nathoo et al., 2018).
his Bayesian interval had been critically noted for not accounting for
ncertainty due to estimating subject-specific effects, prompting Heck
2019) to propose a fully Bayes approach to address this flaw. The
resent article was intended to critically evaluate the necessity of the
ssumptions made in this approach. We came to the conclusion that
hat we have called the random effects assumption is not necessary.
ased on this finding, we proposed a simpler, yet valid alternative
o Heck’ (2019) approach, capitalizing on the theory of degrees of
reedom. Somewhat surprisingly, the resulting calculation rule for the
orrected Bayesian credible interval turned out to be the same as that
or the frequentist counterpart. However, it is important to emphasize
hat this formal equivalence does not imply that these intervals (and
orresponding interpretations!) are the same. Nathoo et al. (2018) in-
ested considerable effort into developing their within-subject credible
nterval, adhering to fundamental Bayesian principles, such as specify-
ng priors and deriving posteriors using Bayes’ theorem. Consequently,
he interval we aimed to modify is undeniably Bayesian. Correcting this
ayesian interval by adjusting degrees of freedom does not alter its
ayesian nature; therefore, the corrected interval remains a Bayesian
nterval. The phenomenon that the formula for calculating it coincides
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with that used for the frequentist confidence interval is purely coinci-
dental and does not warrant conflating the two types of intervals. To
illustrate this point, consider two identical twins. Despite their apparent
similarities, we would not claim these different individuals to be the
same person. Moreover, neither Nathoo et al. (2018) nor Heck (2019)
previously suggested the correction we propose. Indeed, Nathoo et al.
(2018) mentioned that a procedure similar to ours, specifically Morey’
(2008) correction, might be applicable, but they would not pursue this
further (p. 5). Heck (2019) implemented a fully Bayesian approach
using MCMC techniques and noted the similarities between the results
of his simulation studies and those obtained from the frequentist inter-
val. However, he did not advocate for an adjustment of the degrees of
freedom to amend the approach by Nathoo et al. (2018), nor did he
provide reasoning for why such an adjustment might be advantageous.

As Nathoo et al. (2018) noted, a Bayesian within-subject credible
interval conveys information about “the plausibility of the observed
separation between means” (p. 7 f.). Therefore, such an interval is
better than none and is certainly more useful than an interval that
depends on between-subject variability, which is irrelevant to the hy-
pothesis at hand. However, if the aim is to compare levels, an additional
adjustment of the within-subject credible interval is in order. For the
frequentist counterpart, the adjustment is multiplying by

√

2. Two level
means are significantly different from one another if the second mean
lies outside of the first mean’s adjusted interval. However, whether
the Bayesian interval can be adjusted in a similar manner is unclear.
Significance testing is first and foremost a frequentist concept. The
Bayesian concept that corresponds most to testing for significance is
evaluating the Bayes factor. In contrast to the frequentist within-subject
confidence interval, which has the aforementioned relationship with
significance testing, the Bayesian within-subject credible interval has
not yet been shown to have a similar relationship with the Bayes factor.
This has also been critically noted by Nathoo et al. (2018). However,
as showing such a relationship reaches beyond the scope of the present
article, it must be left for future research.

In conclusion, we presented a correction to Nathoo et al.’s within-
subject credible interval that accounts for the uncertainty in estimates
of subject-specific effects. Our correction is essentially an adjustment
in degrees of freedom in the interaction mean squares and in the 𝑡-
istribution for interval computation. Our hope is that this corrected
ithin-subject credible interval will promote the adoption of Bayesian

ntervals, which offer an interpretational benefit over confidence in-
ervals. The fact that our corrected within-subject credible interval
ligns with those proposed by Loftus and Masson (1994) and Morey
2008) suggests that our interval could similarly be calculated using
he procedures proposed by Baguley (2012) and standard non-Bayesian
oftware (see also Cousineau et al., 2021; Cousineau & O’Brien, 2014;
’Brien & Cousineau, 2014). This alignment may support the pragmatic
iew that in many applications, the practical differences between fre-
uentist and Bayesian results are minimal when uninformative priors
re used, allowing results to be interpreted in either framework (see,
.g., Albers, Kiers, & van Ravenzwaaij, 2018, for this argument). How-
ver, in line with Nalborczyk, Bürkner, and Williams (2019), we wish to
mphasize that even if results are numerically identical, their interpre-
ations do differ and should consistently align with the methodology
mployed (see also Zitzmann & Loreth, 2021). If the methodology
s Bayesian, interpretations must adhere to the Bayesian perspective,
ven when results are computed using methods from the frequentist
ramework that yield similar numerical outcomes.
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